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THree-VALUED Logics AND CONDITIONAL EVENT ALGEBRAS

I.R. Goodman

Code 421
Command & Control Department
Naval Ocean Systems Center
San Diego, CA 92152-5000

Abstract

First, a review of the progress is presanted for the
development of conditional event algebras. Following
this, a new canontieal bijection of isomorphisms is
derived. This 18 an extension of the usual indicator
function mapping to that between all possikle truth-
functional three-valued logies and all possible
choices of conditional event operators extending
wneonditional boolean ones. Relations between the
conditional event algebra proposed by Goodman &
Nguyen and L. , as well as that proposed by Schay,
Adumg, and Cglabrese and Sob, are derived, among
ozher isomorphic correspondefices.

Note on General Notation, Conventions

In addition to the usual use of equality =, set in-
clusion g , set membership £, class of all subsets
of or power class P( ), null set ¢, etc., we intro-
duce = to mean "is defined to be", emphasizing the
difference between provable,as in =,and the former.
Throughout, R (as opposed to R for the real line)
stands for an arbitary but fixed nontrivial boolean
algebra of events [or sets] a,a,,..,a ,b,b,,..,b ,
¢,d,.. . When R is considered (via thl Sto&e Reppe-
sentation Theorem or directly) to be such that Rc
p(R), for some set © # @, the following can be in-
terpreted alternatively via the bracketed quanti-
ties, where it is understsod that 6,0 ¢ R: conjunc-
tion [intersection n] is denoted by +, or omitted
altogether for simplicity when context is clear:dis-
junction funion v) is v; negation is { )' [compie-
ment C or set differance { )«( )J;+ represents ex-
clysive disjunction [symmetric set difference A] ;
the special elements 0 [0], 1 [92] ¢ R denote the
zero, unity elements, respectively. < [c] is the
natural partial order (a lattice order) over R
represented by the relation a<b iff a=a-b iff b=bva;
mater&a]/logical implication is denoted =, where
b»a £ b'va =b'vasb=b'+ a-ba material/logical
equivalence is <, where a <>b £ (ba)+(a=b)=ab v
a'b' = (a+b)'. Finally, typically, probability
measures (assumed finitely additive or if needed.
countab]g additive) are given in the form p:R + « ,
vhere « 2[0,1] = the real unit interval.

Introduction

Conditional events have been developed in order to
provide a systematic way to determine evaluations

of arbitrary logical combinations of conditional or
implicative statements with differing antecedents,
so that each is consistent with conditional probabil-
ity. Thus, when one seeks to obtain the probability
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of a compound statement such as “((1f b then a) or
(if d then not(c))) but not e)*, traditional methods
are inadequate in dealing with this. For cxample, if
the well-known material implication is used t¢ inter-
pret the conditionals so that ordinary boolean alge-
bra and properties of probability can be used for

the full evaluation, before proceeding one should
note that the probabitities do not match the corres-
ponding conditional probability forms :

p{b>a)# p(a|b) d p(ab)/p(b) , for p(b)>0, (1)

and similarly for "if d then not(c)". In fact, it
can be seen ({1],p-201) that

(2)
p(b=>a)=1-p(b)+p(ab)=p(aib)+p(a‘[blp(b')zp(a|b),
with strict inequality holding in general. Going
further, Calabre§e([1],Th.ZZJgshowed no binary bool-

ean function g:R°+ R exists (of the 16 possible
ones) for which (3)

plgfa.b))=p(alb), p(b)-0; all a,becR; all p:R + .

Earlier,lewisl2] had shown that g not satisfying

(3) could be extended essentially to any binary
function (nct just boolean). (See also Goodman &
Nguyen({3],ch.1)or a related result restricied

to finite R, using & cardinality arqument involving
range(p).)

For a thorough history of both the negative results
surrounding (») and (3}, as well as proviins scatten
ed attempts at constructing a satisfactor *° -
“ar"conditional” events, see Goodman [4 ] ¢ Goo -~
& Nguyen [ 3]. Briefly, one should mention the orig-
inal contribution of Boole ([ 51,ch.6+ ), Hailperin's
rigorizing of Boole's attempts [ 6], DeFinetti's
work [ 7], Schay's efforts [ 8], Adams' work({ 91,
chp. I1), and more recently, Calabrese [1] and
Bruno & Gilio [10], among others. In all of the
above, only DeFinetti and Schay considered con-
ditional events through extensions of the usual in-
dicator function, with only Schay developing a full
conditional event algebra. Adams proposed extensions
of the usual boolean operators to conditional forms,
but did not give any real interpretation to what
conditional events meant, nor did he investiqate to
the depth that Calabrese carried out in the latter's
fully developed conditional event algebra.

Conditional Events Identified
as Principal Xdeal Cosets

In response to the previous unconnected efforts,

Goodman [11] and Goodman & Nguyen [123,0(137.[3] de-
veloped a fresh approach to conditionai event alge-
bra. Recall the basic concept of the principal ideal




in R generated by any b'eR as Rb'9{xb’ :xeR}cR, lead-
ing to the boolean quotient alaebra R/Rb'={Rb'+a:a
eR‘); with the usual wgll-defined coset operations
for the cosets Rb'+a%{xb'+a:xeR} [141. Denote the~d
class of all zuch erincipal ideal cosels of R as R*
U{R/RY :beR} and the natural mapping nat:R*+R
nat(a,b)4Rb’ +a ={y:ycR & yb=ab}={x:xeR & ab< x < baa}
If g:R*+S is to be 2 reasonable candidate for a con-
ditional event of the form g{a,b), for any a,b ¢ R,
then Lewis' result shows that at least S#R, when
range(g)=S. In addition,one should assume thet:
(i) Antecedent-consequent invariance

g(a,b)=g(ab,b), all a,b e R (4}
(i) Unique global representation
gla,b)=a(c.4) fmplies ab=cé¢ & b=d, all a,b,c,d ¢ R

(5}
(ii) allows for the definition
p(g(a,b))=p(a|b) (6)
to be well-defined. Call any such g possessing prop-
erties (i) and (i1) a feasible candidate for form-
ing conditional events. Then the following holds:

Theorem 1. Goodman & Nguyen [ 31,chp.2.

(i) nat is a feasible candidate for forming con-
ditional events and for each fixed b, nat(-,b):R~
E/Rb' is a homomorphism wrt coset operations.

(ii) If g:R%+3is any feasible candidate for form-
ing conditional events, then g is globally isomor-
ghic to nat. That is, there exists bijection }:S*R,
where gog=nat and for each beR,yy:range(g(-,b)):+
R/Rb' is a bijection, and hence an isomorphism for
the usual induced operations over range(g(-,b))
through R/Rb', where ¥ (g(a,b)) d nat?a,b).

Remarks.

(7} The above theorem justifies naturally the choice
of principal ideal cosets of R for its conditional
eventsa so that one defines for all a,b e R,

(a]b)E Rb'+ab, (R|R) € R={(a|b):a,b € R} cP(R). (7)
(i1) Hailperin [6 J approached the above identifi-
cation from the Chevalley-Uzkov algebraic fraction
viewpoint and obtaiied the same result, while Cala-
brese took a logical deduct approach([1 ], sect.3)
vhich was later shown also to be equivalent to (73-
(121, egs.(2.19)-(2.25).

(iii) Special conditional events: wiconditional
events a=(a]l), whence Rg R!Rz; the indeterminate
conditional event (a|0)=(0{0);the wnity-type con-
ditional events (1]b)=(b}b)=Rb'v b = Ryb = principal
filter generated by b in R, bf0;the zero-type con-
ditional events (OTb)=(b'|b)=Rb' = principal ideal
generated by b' in R, b#0.

(iv) Note the relations for all a,b,c,d ¢ R:
1=(1]1);0=(0|1) ; (ab)=(c|d) iff ab=cd & b=d. (8)

Conditional Bvents Identified with
Three-Valued Indicator Punctions

DeFinetti [ 7] and, independently,Schay [ g ] extended
the ordinary {ndicator functions of sets to three
values to represent conditional events by the mappimg
&:R + {0,e,1}0 ,assuming ReP(Q), where wlog, we
also assume here the third value is « (entire unit
interval). From now on denote {0,«,1} by Qp- Then,
for a1l (a]b)e(R|R) and a1l w ¢ Q,
d)"l , ifweab
#a|b)(w) =40 , ifwe a'b
«,ifweb'

(9)

The following theorem can help motivate the choice

of operators over (R|R) extending the boolean ones

over R, assuming R is atomic and noting 0s«sl:

Theorem 2. Goodman & Hquyen [3 ], chp.5.

tet ReP(Q). For any (a?b).(cld) e (RIR)~{(0]0)}:

(i) When (a]b) is not zero-type, (c|d) not wnity-type:
(1) o(a]b) s o(c|d) pointwise over Q ,

{II) ab (cg &c'd <a'b,i.e., abscd & bya < dac,
111) p(a1b) < plc]d) a1l prob. p:R=e;p(bp(d)»0,

are all equivalent statements.

(ii) (afb) is of zero-type iff &{a|b)s« over @ iff
plalb)=0, a1l prob. p:R-+« , o(b)>0.
(iii) (cld) is of unity type iff «sdé(c|d) over Q
p(cld)=1, all prob. p:R~« , p(d)>0.

Remarks,

{(7) The indeterminate element is the only (a|b) for
which ¢(a|b)=« identically over Q.

(1i)It is desirable to obtain a conditional event
algebra of operations yielding a partial order over
(R?R)2 extending the unconditional counterpart <
over R%, compatible with Theorem 2. This is seen to
be the case‘as presented in the next section.

Functional Image Approach to Extending
Boolean Operators over R to (RIR)

As mentioned before, Adams, Schay, and Calabrese
have independently proposed extensions of bool-an
aperators to (R|R), details of which will be shown
later. These operators were based upon empirically
appealing, but ad hoc,considerations. The thinking
of Goodman & Nguyen has been, on the other hand to
use the natural way one extends "point"-valued
functions to set valued ones: g:X+Y extends by ghe
well-known fhncﬁiongl image approach to simply g:
P(X)+p(Y), via G(£)%{g(x):xecA}, all AcP(X).Since
(R[R)c PIR), it seems reasonable to attempt to extend
the ordinary boolean operators over R by the funct-
jonal image approach restricted to (R|R), with the
expectation that closure holds not just fur P(R)
(trivially), but for (R|R) itself.Inis is indeed so:

Theorem 3. (121, N3],

For al a,b.c,d,aj,bjeR,j=},..,n arbitrary:

{

0 (ajb)* d x':xela|b)} = (a'|b), (e)
(alb)+(c|d)E{x-y:xe(aib),ye(c|d)} = (abcdlrz),
(a[b)v{c d)g{xvy:xs(a b),ye{c|d}} = (abvcd lqz),
(alb)+(c|d)={x+y:xe(a|b),ye{c|d)} = (ab +cd Isz),

vhere .d d
r,fa'bvc'dvabed;gymabved vabe'd 5 sp* bd . (1)

More generally,it gan be shown
(iby)- - (anl by)=( ;2 2550w dor = vy, v - a5y
0
(a-‘[b])v..v(anlbn)=(j§~|ajbj|qn);qn .
(a]Ib])+..+(an|bn)=(j:1ajbj|sn); Sy b5
(ji) Extend natural partial order < over R? to €
over (R|R)2, where by definition,
(alb) <€ (cld) iff (a]b) = (a|b)-(c[d).

Then, (14)
(alb)<(cld) iff (c|d)=(a]b)v(c|d) iff ab<cdac'd<a'd

(13)

(i“)(alh)-b =ab; (a|bc)-(c]b) = (ac| b)s (chaininghs)

1£.9 a; b, (a,]b)= . LIPS '
4% 2b (ajl ) ((blaj) a; | yi(bla) aj.(ftigzglgem

i =




Remarks.

(Y Theerem 3 shows that any finite logical combina-
tion of logical connectors of conditional statements
can be evaluated compatible with all probability e-
valuations, thus addressing the motivating problem
for developing conditional event algebras.

(ii) Applying Theorem 3({{i) to Theorem 2 answers in
tne affirmative the remark, part (ii) following
Theorem 2 : the extended lattice or partial order €
over (RIR)? yields the compatibility, for all (a|b},
{cld)e(RIR) with {a]b) not zero-type,(c|d) not unity

LYPE: 4(alb)so(cld) over @ iff (ab)<(c|d) iff for
ail prob. p:R~e, p(b),p(d)>0, p(a|b)sp(cld). (16)

(iii) A third type of justification for employing
the conditional event algebrz proposed here is pro-
vided by the next theorem, where it is seen:that
this conditional event algebra has almost all the
properties of a boolean algebra; that it can be
categorized completely algebraically as a Stone
algehra with some additional properties; and that
it can be used to extend fully the Stone Represen-
tation Theorem for the classical case (as in {143).

Theorem 4. (3 1,chp.4.

(7Y Consider (R{R} relative to the operations and
relations introduced by the functional image ap-
proach for -,v,{ )',+,<, keeping in mind the special
elements 0,1,(0{0). Then, (R[R} is a Stone Algebra:
it is a bounded (wrt lattice order < below by O,
above by 1) lattice wrt -,v (hence, associative,
commutative, idempotent, and absorbing)which is
distributive mutually for -,v, and (-,v,{ }') is a
Detorgan triple. In general, however, (R|R) is not
orthocompiemented : the leading candidate ( )' fails,
since for example,(a|b)-(alb}'=(0]b)#0, unless b=1.
The pseudocomplement mapping { )*:{R{R)+ (R]|R)
exists, extending ( )’ over R, and satisfying the

Stone condition (17)
(alb)* v (a]b)** = 3, a1l (a]b)e(R|R).

(1) More on the pseudocomplementation of (R{R):
Actually, (R[R) is not only pseudocomplemented, but
relatively pseudocomplemented, extending the well-
known property that R is reiatively pseudocomplemen-
ted with, fog all a,be R,

bba = v{x:xeR & xb<a) =ba>ac R. (1g)
Specifically, for a1l (ajb),(c]d) e (R{R),

(cld)(alb)= vi(x]y) :(x]y)e(RIR) & {=]y)-(cld)<(alb}
= Xxv(alb)=(Avab|avb);A=b'd'vc'

] ) c (%9)

From this,
(20)

(cld)* (cla)bo = c'd eR < (R]R).
(11)()’ is invotutive for (R|{R) and with ( )*,
(alb)*' = (afb)** (=b>a); (0]o)'*=0. (21)
Referring to Gratzer e.q. {151, the skeletal
and dense sets ¢f (R|R) are, respectively,
(P-IR)*Q((aIb)*:(db)c(RlR)};o(n]n)gker(l)*hn*'b)
yielding the relation - since (RIR)*=R, (227
B(R[R) = (R[R)* v (0]0) (= {(b]b): b €R}). (23)
In a related vein, note the relations for all a,beRe

(RIR)=R v Re(0]0) via (2] b)=abvb'-(0lo ). (24)

(ii) Conversely to the above results, replacing (R|R)

by any abstract algebraic system s which is a Stone
a{gebra {involutive wrt its ()’ oﬁerator) satisfying

the compatibility condilions of (i)(I1), then also
$ is isomorphic to (R[R}), where here R=S* necessar-
ily a boolean algebra. Call the mapping h:S+ (R|R).
In turn, if the standard Stone Representation map-
ping is denoted as m:R- P{Q), for any boolean alge-
bra R, an injective isomorghi,m, it can be shown
that the mapping (m{m):(R]R)~ (P(Q)|P(Q)) is also
an injective isomorphism, extending m, where
(alm)alb)(mlab)|m(b)), a1t (alb) e (RIR) . (25)
with (R]R) assigned the conditional event algebra
as in (i). Hence, the compositicn of manpings
(mlm)oh :$+(P(Q)[P(Q)) is an injective isomorphism,
providing a conirete representation forany such
abstract conditional event algebra. =

Basic Isomorphism between All 3-Valued
Truth-Functional Logics and All Boolean-
Extended Conditional Event Algebras

In the last section a compact detailed structural
analysis of the Goodman & Hguyen [abbreviated from
now on as GNJ conditional event algebra was given.
Much remains to be analyzed for the other leading
candidate concitional event algebras, including the
independently considered, but commonly structured,
proposal of Schay (alternate choice one of two prof-
fered [8]), Adams' [ 9], and Calabrese [1] [abbrew
jated from now on as SAC),and another of Schay's
(alternate choice two- see again [8 J)[abbreviated
from now on as simply S]. However, Schay ([8 J,Theo-
rem 5) has derived Stone-like representations for,
in effect, both SAC and S, corresponding to part of
Theorem 4(i1) above.

For completeness, the basic cperators far SAC and S
are given below, with appropriately subscripted let-
ters for all (aib),(cldg e (R|R). Once more, it isem
phasized that GN, SAC, and S all agree on the es-
sential structure of (R]R)-sans any algebraic oper-
ations,other than the classical coset ones for each
fixed antecedent principal ideal boolean quotient
algebra of parent boolean algebra R:

(a]b)'SAC = (afb)'S ¢ (a'[b) (=(alb) ™)z (26)
(alt) ¢ (cl'!')‘?- (abvedbvd) 5 (27)
(a]b}-saclcld)2((al b) SACygpc(cld) SA0Y Sh

=({b>a)+(dot)|ovd)=(abd" v b'cd v abcd}bvd), (28)
a DeMorgan relation;
{c[d) d (ab v cd | bd); (29)

(a[b) Vg ;
(alb)+glcld) £ {(a]b)'S vglc]d)'S)'S = (abcd ]| bd), (30)

2also a DeMorgan relation.

In addition, recently, Dubois & Prade [16],[17] have
expressed interest in the development of the candi-
date conditional event algebras. In [16], pp)112,
1113 and [17], pp.31-34, they have pointed out that
the following correspondences hold between the three
tasic candidates and certain three-valued logics
{although this was previously also indicated in [18]
in preliminary form),using an informal argument:

SAC ++ Sobg ; S ++By ; G 4> &3 , (31)
where Sobj indicates Sobocinski's three-valued logic
(see [197 or Rescher [20], pp. 70,342), By is Boch-
var's internal three-valued logic ([20],pp.29-3?f20]

339) d t3 is Lukasiewicz' three-valued logic
on 222208 ana Sasyreste I

33




In this section a general theorem will be fully der-
jved which constructively establishes an isomorphism
between any choice of three-valued truth functional

logical operator and any extended boolean condition-
al event operater (for definition, see below). First,
some additional notation for multiple variables, as

well as other concepts must be introduced (R ¢ P(2)):

Llet n be any pos:twe integer and a,b aJ,bJ ¢ R arb:

a=(a ,..,a)b(b],-- n,ab(albl, by) er”
d n d d

'(_a_)"' j=1aj"a] n CR; (_a_lé) ((a]lb]))--s(an|bn)) [

(R[R)"; and extend the three-valued indicator func-
tion for any weN a

¢(a|b)1m)-(¢(a1lb1 ),...4(aylb ) e Qg . (32)
Define the mapplnns Wy (RlR)+ R, 'eOo , by
w](alo) ab; wo(alb)-a b, (a b) b’ . (33)
and ex;enqu this, fer =ay §=(j;,...0p) ¢ Qg,
Ws (alb) (w5 (a]lb, e (a [b,)) € ™ . (34)
rnso, (35)

bool, (R) {g: g: R"-»R is a boolean function}
and for anv pair g;,q, € bool (R) define the
extended boolean ﬁmc ion over (P'R) , (g lr? Y:(R| R
-+ (R[R), where for any (alb) = (a- blb)c(Rl
(g19,)(210) ¢ (g, (a-b,b) | g,(a-b.b)).
Lemma 1.

(i) For any (a[b)e(R|R), {w.(a]b).ieQ,} is a par-
titioning of Q, and more genéraﬂy, so is

(w (alb): g_eQ"’d w(a|b) a partitioning of Q.
(i)

(36)

¢(a|b)' (i) =w, (alb), allieq,,
and more generally, for all j e Qo
$(210)71 ()= (wj(alp)ie, o(alb) @)=i TFF werty; (alb)z

Lemma 2. For each geboo],n(R), there is a minimal
Classwise nonvacuous index set Jg < Qo such that

glalb) = v( -(w.(a]b))s; 211 (alb) e (R[R)",
T Jed, 37T - (37

Proof: Use normal disjunctive form for boolean

functions. =

Theorem 5. Let g AR)“—»(RIR) be arbitrary in

ibooI lP)lbool (R)) {g:9= (gllgz) ext.bool ,over{R[R)"}

Then. there is a unique function ¥(g):qQ, "*0 Sucsga)

that for all (alb) e (RIR)", 211 weg,

é(g(alb) M) = v(g)(s(alb)(w)). (39)
Constructive Proof: Let g= (Qllg ). g eboo]z,,(R,
By Lemma 2, for each k, k=1,2, tere sJd, ¢ .

such that (17) holds with n+2n,rg Thenik applying
the definition of ¢ in (9), and using the partition-
ing properties of wl2|b) from Lemma 1(i), for wen,

¢(g(alb))(w) i iffweC 1(alb) i €Q,,(40)
1(alb) = g lensalbh)) e, (41)

&Jg,i
g1 -Jg‘nJ 390 dagz-mg]; g =o°"-<qu. (42)

Hote that, while w(a|b) is a partitioning of 0,

(C i{alb):iey)} is @ partitioning o. 2 and
(Jg 5170} is a partiticning of Q"

tiext, define Y(g):Q, = Q, as follows: For any jcQy".
from the above remarks. there is a unique 1,

'-f.ng)( ) € Q with j ¢ Jg ;o
324D € 3g 4g)(5)

sfor each weQ.
Finally, with (a[b)e(R[R)}" fixed arb., for any weQ,
choose j as in the left hand side of (44) followed
by defining i as in (43),(44}. Then, by lemma 1(ii)
applied to (44), we -(w; (a[b)) In turn, applying
this to {40),(41), takifiq into account (44) agan,
shows that for the above (2|b),w,i,i,

(43)

whence (44)

é(g(21b))(w) = (45)
On the other hand, (43) and (44) state immediately
that
? o(g} (8(a]b)(e)) = (46)
us, (45) and (46) together show (39) holding. .

Theorem 6. Let h: Qo"-*O be any f|‘mction. Then,
there exists. a unique fanction ¢~ (k):(RIR)™+(R]R)
in (bool (R)Iboo1 (R)) such that for all (a]b)e
(RIR)" and a11 w & 0,

s(¥ 1 (h)(ab)) (w) = hls(a]b)(w)). (a7)
Constructive Proof: First, for each 1::00 and any
(a]b)s(RIR) d?fme ana‘logous to (41), replacing
JE there byh ) cQ R
((w ;(a[b)),ieq, .

G ;(alp) ¢ (47)

Note that since fh—](l) :i€Q,) is a partitioning of
Q," and w(alb) is a part1t10mng of Q, then
{Ch ;(alb):i€Qy) is a partitioning of Q. In turn,
define for any (a|b) e (R[R)" ,

¢ alp) ¢ (g, @l)]g, e D) vG, oaib)), (48)
Now, taking & over (48), using the definition in (9),

the above remarks show for all (a|b) e (RIR)", a1l w
e, and a1l ie(Q

S0 () (@lD)) (@) = & iFF we G ;(alb) iF,by)

(47), there is some (umque) Jeh 1(1) such that
we (v (alb)) iff , using Lemma 1(ii),there is 49

some (umque) 3 €q, N <o that h(3)=i, $lafblw)=j
(49) thus shows fmany the desired result in (47).
| 1

Corollarz 1. Referring to Theorens 5 and 6:
(i) y:(bool,(R)|baol (R))-»QOQO js a bijection
which nakes any g c(bool (R)Ibool (R)) commutative
with the three-valued indicator nappmg $:(RIR) +Q,
in the sense

$og = wlg)es , (50}
i.e., for a1l (a]b) e (R[R)", weS, eq.(39) holds.
(i1) 1n a sense equivalent to (i), ¢$:(R[R)+Q, is

an 1somorph1sn Ee]atwe to (bool (R)lboo'ln(R) over
(R[R)" and q, Q" over Q"

Proof:Direct result of combining Theorems 5 and 6.

Remark. Corollary 1 shows that all algebraic proper-
ties of (R|R) relative to (boo1 (R)|boo1,(R)) and

Q relztive to Q 0" must coincide ! This can be use- Y
ful in devdopmg properties for conditional event !
:

b
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;

1
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algebras via tiree-valued logics and vice veri.. The
next sectionsshow how Corollary 1 (or Theorems & or
6) can be used to compare and contrast properties
for various candidate conditional event 3lgebras in
additien to the three discussed earlier.

Purther Results Using the Basic luomorphism

Example illustrating conditional event alge-
bra operations converted to 3-valued logic.

As an example hkow the constructive proof in Theorem
5 can_be used, consider again the operator g = egpc
(R]R)?+ (R|R) from eq.(28). Here, n=2, (alb) =
(falb),(cld)), g = (g11g,), where

g, (3°b,b)=abd’ v b'cd v abed = wlialb)w“(cld) v

1 w,(alblw;(cld) v wi(alblwi(c]d),
g = ((] ’“)’(a)]),(] 9])};

bvd = abv a'bvedvc'd
w(alb) v wo(alb) v w](cld) v wylcid)
Y W bw.(cid .
i, 1(alblur. (cl )Vigqo"‘o(alb)w.‘(cld)
V,-goowi(alb)w] (cld)v v owi(alb)wo(c[d).

ie(
= {(1,0),(1,4),(1,1),(0,0),(0,),(0,1),
(0,1),(«,1},(1,1),(0,0),(«,0),(1,0)}
= Q2 +{(ee)}-
Then, from eq.(42),
Jg’1=Jg]nng={(1.lt).(a,”‘('l A1,
JQ’O=J92-1J91=((0.0),(O,u).(0,1),(a.o),ﬂ,0)}.

Jg :a=Qo7 ‘*ng:{ (“‘u) ) )

whence J

9, (9..2 ’P.)

whence

ng

Thus, for a1l 3=(3;,3p)€Q »¥(-spc ) (4)=1,if Jedg ¢

32
Wosacf @ « 11 - \aqge i=0, for iedg o
6 |i0 0<% i iedg,
Y« |i0Tgiiil - value i=a, for jelg.u
1 liein] e T fordedg

Figure 1. Partitioning of values for the 3-
valued Togic operator corresponding
to egac via procedure of Theorem 5.

Example illustrating 3-valued logic opera-
tors converted to conditional event algebra.

As an example how the constructive proof in Theorem
6 can be used, consider the three-valed logical op-
erator given in figure 1. He will show how the orig-
inal generating conditional event operator - in this
case °saCc - can be recovered, knowing only the en-
tries in the table,

First, obtain from the table, denoted as 3-valued
Togical operator h (replacing ¥(-sac),

r71(0)=((0,0),(0,4),(0,1),(«,0),(1,0)};

R=1(w)=({u,u)}s A-1(1)=((1,u),(1,1),(u,1)}.
Next, obtain for any (a|b)¥((a]b),(c]d))e(r[R)? ,
G, 0(alb)=wg(albiglcld) v wplafbw (cld) v

wolalbke (cld) v w,(alby(cld) v A (alby(cld)
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a‘be'd v a'bd" v a'bed v b'c'd v abe'd
a'b vce'd,
G, .1(alb)=w; (albr, (cla) v w(albly (c[d) v
wylatbhy(cld)
= abd' v abcd v b'cd ,
(G u(g_lg)=w“(a|b)wu(cld)=h'd‘ not needed )

Compul:e:Ch ofale) v ¢ 1(alb) =
a'b v a'bed v ¢'d v abc'd.v abd’ vabedv b’cd
a'b vab{c'd v d* v cd)v ¢'d v (2bvabyvb')ed

a'bvabvce'dvcd
a‘bvece'd .

non

wot o

Hence

o ) (alb)=(g, q(alb)lg, 1(2lB) v o(alb))
=(abd* v abed v b'ed | bvd) ,
which of course checks with <gpe in eq.(28).

Applications to Comparing/Contrasting
Conditional Event Algebras

Using the procedure in iue examples, one can verify
rigorously Dubois & Prade's conclusions in (31):

Corollary 2. ¢:(R|R)+Q, is an iscmorphism relative
to:

(ii SAC-conditional event algebra over (R|R)n and
Sob, logic over Qo“.

(i1) S-conditional event algebra over (RIR)" and
83 logic over Qo .

(iii) GN-conditional event algebra over (R[Rf1 and
t, logic over Qo“. .
Next, consider a number of desirable properties that
a conditional event algebra should possess. By use
of the transfer technique above, in general it will
be more convenient to analyze the candidate con-
ditional event algebras for these properties via the
three-valued logic form, rather than in the original
form.However, these properties will be given in the
latter form initially with 2 circle about the cor-
responding ordinary boolean operator to indicate the
generic form:

Details are not required for the standard concepts
of associativity, commutativity, and idempotence for
(©f), involutiveness for ()9, (O®,()®) being
orthocomplemented (i.e., law of excluded middle
holds) or being a Delorgan triple, or, finally, for
(®®) being mutually distributive. In addition,
define the following by the associated equations

for 211 (a]b),(c]d) € (R|R):

ronotonicity { ${{21P)8e| &) £ cla bl ehe]d)

0@(afb) =0, 0@(2[b) = (a|b)

Zero-unity {

1@(ajb) =1,10(a|b) = (a]b)
cormon antecedent {(a b)Qlc|b) = (aclb),
homomorphism (ab)@(c|b) = (avc]b)

chaining 1: (ajb)®@b=2ab;2: (2]bc)@(cfb) =(ac|b)
full lattice:{2]b)=(2[b)®(c[d)iff(c]d)=(a]t)D(c|d)
s(alb)sslcld) iff plajb)sp(cld) iff

(a|b)®(c|d)derined by full lattice,

for all p:R~« prob., p(b),p(d)>0,
(a]b) not zero-, {c|d) not unity-types

full com-
patibility




logical eatailment
tautologically
preserved

event iff ¢(c]d) s ¢(a]b),
where @ is any extension
of = over R? to (R|R)?

Tonical eguival- !(cld)@(alb) is a unity-

i(cld)@(alb) is a unity-type

ence tautologic- type event iff (c|d)=(a|b)

ally preserved where (&) extends <» over R
to (R|R)?

ralatively pseudocomplemented: see eq.(19)

3

The candidate conditional algebras to be compared
relative to the above properties will not only in-
clude the three basic ones (SAC, S, GN) but will
also include, for general interest, all possible
commutative, monotonic, DeMorgan fcmD] systemswith
implication and logical equivalence being in the
same formal relation as = and ¢ relative to R%.
For the latter class, the transfer technique shows
immediately that the truth table for all such sys-
tems must have its conjunction operator as:

Table 1. 2ossible cmD's.

w(©)] 0 @ 1
(] 0 0 0
e« | 0 {0or « (0ora
1 0 (0 or «) 1

In turn, Table 1 allows only four possible candi-
dates satisfying the required constraints. Thuse
are all presented in Table 2 below:

Table 2. The 4 possible cmD conjunctions.
x;;(@l) 0l tb(@z) Ol !b(@s) 021 "'”'34) 0wl

0 |0O0C)| 0 {00C o o000l 6 j00O0
« |000] « jJO0 & « |00l « [0 e

T 001 1 |0l 1 jo01ljl 1 0l

. Clearly, the fourth subtable above is the same as

. &y cerjunction, i.e., min, which already has been
introduced as corresponding to GH. It should be
also noted that the second subtable above corres-
ponds to the important connector cop_, the smallest
possible copula , where, for all s,t e «,

copo(s,t) d max(s+t-1,0) fa *=* 1), (51)

(See [21] for background.) cop. also plays a key
rele, where (copo,cocopo,min,m x) forms the foun-

dation for 2 Chang or MV algebra, where cocop is
the DeMorgan dual of cop, (and hence the maxifial

such one) d
cocopo(s,t) =min(s+t,1) («'=' %), (52)

(See [221, p. 473 et passim for further details.)

Also, for completeness, the 3-valued logicel tables
corresponding to the three leading candidates will
now be displayed for the conjunction operators:

Table 3. Conjunctions for Sob3,83,{3.

5 0 « 102 0 & Tg 0 «1
000 0 « 0 0 00
0 « V| ¢} ¢« ¢ «fl e} 0 «z @
110 1 1§ 11 0 ¢« 1[1]0 & 1

Applying the transfer procedure of the second ex-
ample, yields the following conditional event al-
gebra correspondences to the conjunction operators
in Table 2, for 211 {a|b),(c|d) e (R|R)}{ the dis-
junction being just the DeMorgan dual):

(alb)-q(c]d) = abed , (53)
2 scalar quantity! (54)
(afb)-,(cld) = (abcd}a'bvc'd vabcd v b'd’)
(alb)-3(cld) = (abcd{tzvd). (55)

Finally, as a check with eq.(10),
(alb)-q(cld) = (abed]a’'bv c'd v abed). (56)

Thus, in summary, the candidate conditional event
algebras considered are represented by their con-
junction operators given in eqs.(28),(30),{10),and
(53)-(55), while their corresponding 3-valued logi-
cal conjunction operators are given in Tables 3 and
2. A1l of this leads to the next table providing a
comparisons and contrasts for the above 6 systems,
again obtained via the transfer technique, based
upon Theorems 5 and 6:

Table 4. Comparisons of properties for 6
candidate conditional event algebras.

Conditional Event
Algebra | SAC S  GN cmD] csz cmD3
Properties

O associative |{YES YES YES VYES YES YES
O commutative [lYES YES YES YES YES  VES
O@.idempotent JIYES YES YES HO  NO  YES
( )9 involutive |[YES YES YES YES YES  YES
O®{ )O orthocoml| NO H0 NHO YES  YES Ho
O®{ ) DeMorgan|lYES YES YES YES VES  YES
Q@ mut. distrib.|]] HO YES YES YES YES  HO
monotonicity KO N0 YES YES YES YES
zero-unity NO N0 YES HO YES NO
com. ante. homomor}|[YES YES YES 1O #0 YES
chaining prop. 1 [[YES YES YES YES YES  YES
chaining prop. 2 [[YES YES YES HNO YES VES
full O lattice || KO NO YES NO  YES i)
full compatibil, }{ HO NO YES KO o NO
logical ent.pres.\VES}. HO §, KO HO o
logical equ.pres.|YESf, W0 {, O  HO KO
rel. pseudocompl.jf HO ~ NO YE N0  YES N0

'h.YES. only if the consequent of material impli-
cation ((c|d)* v (a]b)), i.e., c'd v ab (using
eq.{10)), 1s used in place of the usval &, impli-
cation, which by applying Theorem 6 to [30],p.23
1s infact in the form b'd’ v ({c[d)' v (a]b)).

1,YES, only if the consequent of material (lugical)
equivalence (({(c|d)’ v (2[b))-((alb)* v (c]d)) =
(abe>cd | bd)), 1.e., ab<ocd,is used in place
of the usual ¥, equivalence, which by applying
Theorem 6 to [20],p.23 is in the form b'd' v

. (abedcd |bd).

13 The YES response of SAC and the partial YES of
G (see t,,}, above) are due to a characteri-
zation thal tgese are the only possible systens
preservinglogical entailment and logical equi-
valence tautologically. {See [3].)

Remarks.

(3) T1able 4 can be used immediately, e.g., to char-
acterize GH as that unique conditional event alge-
bra which is an idempotent, mutually distributive
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crmb having the common antecedent homomorphism prop-
erty. ;

(ii) Additional properties of Gh can be found in

[3] where higher order conditional events and their
homomorphic reductions are considered, as well as
development of a conditional probability logic of
propositions and the issue of relating the classical
assignment of conditional probability to conditionad
events as functional image extensions. Furthermore,
relations are developed between conditional random
variables and ce's {conditional events),as well as,
between qualitative conditional probability and ce's
with interpretations for their outcomes through ¢.
(iii) In an alternative direction, tcCarthy has de-
veloped 2 three-valued logic responsive to the spir-
it of flow diagrams "if then, else..” [23], which
has been greatly expanded and analyzed Ly Guzman &
Squier [24], relating t2 a Kleene regular extension
of classical logic. However, none of this has been
related to probability computations in the sense
discussed in this paoer. It is of some interest.
however, to be able to convert this non-commutative
logic into a conditional event algebra. In partic-
ular, the proposed conjunction operator is given by
the table Table §.

0 e« 1

0« 1
&0 0 0
i

@€ e o«

0 « 1
Using Theorem 6, 1t readily follows that 57)

{a]b) w'l(cl.) (cld)=(abcd|(a'vd)b) ,all ab,c.d é R,
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